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If the solution is not unique…

should we go fishing?
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Basics

n We know the amplitudes
n We want to find the phases

n Problem is insolvable without additional 
information – constraints

n Use an iterative approach



The importance of phase information

Correct Modulus 
Random Phases

Correct Phase 
Random Modulus

Suzy



Role of error in phases (degrees)
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We would like to find the phases exactly, but we don’t have to



Algorithm Overview (Gerschberg-Saxton)
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Successive Projections

n Iterate between 
projections

n Other variants 
possible (see 
Combettes,
Advances in 
Imaging and 
Electron Physics
95, 155-270, 1996)

Set of |Uobs(k)|exp(iφ(k))

Set of U(k) that satisfy
some constraints

Set of all U(k)

Start



Over-relaxed Projections

n Iterate between 
projections

n Overshoot 
(deliberately)

n Converges faster

n Sometimes better 
solutions 

Set of |Uobs(k)|exp(iφ(k))

Set of U(k) that satisfies
atomistic constraints

Set of all U(k)

Start
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Example: Fourier Difference Map

n We know all the moduli, |U(k)|
n Suppose we know part of the structure, 

Ua(k) = |Ua(k)|exp(iφa(k))

n Find the additional component D(k) such that
|Ua(k) + D(k)| = |U(k)|

n Minimize (orthogonal projection):
|D(k)|2 – λ{ |Ua(k)+D(k)|-|U(k)|}

n Solution
D(k) = exp(iφa(k)){|U(k)|-|Ua(k)|}
Conventional Fourier Difference Map

D
Ua



Algorithm Overview (Gerschberg-Saxton)
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Where do constraints come from

n Physical nature of experiment
– Limited beam or object size

n Physical nature of scattering
– Atomic scattering

n Statistics & Probability
– Minimum Information/Bias = Maximum 

Entropy



The $64,000 question

n Consider the points which obey a constraint as a set

n A set is convex if any point between two members is also a 
member

n Amplitude measurements 

do not form a convex set
•

Α

C
••

|F(k)|=const

B

×



Types of Constraints

n Convex – highly convergent
– Multiple convex constraints are unique

n Non-convex – weakly convergent
– Multiple non-convex constraints may not be 

unique



Multiple non-convex constraints

Overall Convex Overall Non-Convex

NU
Consider the two sets “N” and “U”

U
N



Simplest Constraint: Limited Object

n 1D Continuous, overall problem is non-
unique

n 1D Non-continuous, may be unique

n nD Continuous, n≥2, overall unique
(Provided that the Patterson Function is limited)



Other Constraints

Symmetry

Support for gradient

Bond anglesStatistics (e.g. Σ2)

Anti-bumpingIntensities & errors ≡ χ2

Interference

A(k)=| B(k)+Known(k)|2
Least bias (MaxEnt)

Bond LengthsAtoms at given positions

Presence of AtomsPositivity (weak)
Convex Non-Convex



Atomistic Constraints

ρ(r) known 
(convex if position 
is known)

Bonding –
another atom

Bumping 
ρ(r)=0



Atomistic Constraint

n Simple case, Unitary Sayre Equation
– F(k) = Σlf(k)exp(2πik.rl)

n Divide by N, #atoms & f(k), atomic 
scattering factors
– U(k) = (1/N)Σlexp(2πik.rl) ;u(r) = (1/N)Σlδ(r-rl)

– u(r) = Nu(r)2



Classic Direct Methods

n Consider as an iteration
Un(k) un(r) 

Constraint                                        Constraint

U’(k) un
2(k)

n Note the similarities
– Tangent Formula ≡ Orthogonal Projection
– Real space operator, effectively an eigenfunction (fixed point) 

method



Null Hypothesis: Minimum 
Bias/Information

n Consider most probable distribution of 
phases for random atoms
– Central-Limit Theorem

ØCochran Distribution

– Bregman Projection using xlogx
ØMaximum entropy or Kullback-Leibler metric

Convex constraints



Algorithm Overview (Gerschberg-Saxton)
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Probability
Contours

{S1: | F {x}|=|Xe|}

Set with some 
probability

Multiply-Connected Feasible Set

Three shaded 
regions common 
to both sets, 3 
unique solutions



Typical results

3D Calibration Test (In 4x1 Model)
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∆φ = phase error
Σ|U(k)|{1-cos(∆φ)}

Σ|U(k)|



Hypothesis (5/18/2001)

n Think about the probability near a solution
n Apply classic D.M. statistics to 

Un+1(k)-Un(k)
n Use central-limit theorem

– P(|U(k)|cos(∆φ))~Cexp{N|U(k)|2cos(∆φ)}
– ∆φ = phase error

n Needs verification – but correllates with 
results!



Crystallographic methodology

Overall Non-Convex

Overall Unique

Addition of additional 
convex constraints 
tends to give a unique 
solution

Structure Completion: 
add additional 
constraints as the 
phases become known

U
N



1D Support Constraint

n “Conventional Wisdom”
– In 1D, overall problem is non-unique

RealityPathological

Many solutions

Alternates

A few solutions

Quasi-unique

Differences are 
not meaningful

Unique

One solution



Magnetic Field (B)

I c(
B

)
Ic(B) = |∫exp(2πixB)Jc(x)dx|

current direction 

magnetic field 
B

grain boundary

Jc(x)
x

1D-Josephson Junction Problem

Ic(B)

Physica C 315, 145 (1999) ; Journal of Applied Physics 87, 2454 (2000) ; 
Interface Science  8, 231 (2000); PRB submitted
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bicrystal substrate 

YBCO film [001]

grain boundary



10 µm

Location of grain boundary

Grain boundary

Create a 1-D finite object by micropatterning

Electrical Contacts

Generate a compact support



Constraints on Real-Space Form

n For simple (low-angle) boundaries
– Boundary is finite

– Current is positive

– Current is less than a known maximum (weak)

n For 45 degree boundaries
– Boundary is finite

– Current may be positive or negative



Method

n Standard “HIO”, i.e. successive orthogonal 
projections

n FOM = L1 or L2 mean (does not seem to 
matter here)

n Genetic search to find feasible set of 
solutions
– For M initial trials, best N form the feasible set



J(x)
(µA/µm)

Experimental Data: J(x) > 0

24 ° YBCO Bicrystal, 5 µm Wide Boundary
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Verification via changing 
Temperature
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Experimental Data: 5µm boundary



45o boundary:  -Jc<J(x) < Jc 
Use a discontinuous support

Grain boundary plane

microbridge edges

No film A          B              C

Cut 
grooves 
with a 
FIB



Inversion (unique)
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N.B.: support is smaller than that which is known to be unique



Layer 1

Layer 2

Substrate
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1D- X-ray Reflectivity Problem
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(Kinematical Approximation)
Bengu, Salud & Marks, PRB, in press
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Quasi-Unique Solutions

Depth, Z (Å)
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19.07±±0.3 Å
(19.0 Å)*

* J.S. Pedersen (1992), J. Appl. Cryst., 25, 129.

Experimental Data



1D/3D-Surface Problem

n Incomplete set of measurements 
– 20-30% of total

n Atomistic constraints
n Periodic in x,y; compact support 

constraint along z

Basics: Surface Reviews and Letters 5, 1087 (1998) ; 
Acta Crystallographica A55, 601 (1999); Physical 
Review B 60, 2771 (1999)

SrTiO3 (001) 2x1



3D-Support Constraint

n Displacements decay as 
(α+z)exp(-qz) into bulk1

n Consider only non-bulk spots

n Real space constraint

– ρ(z)=0 away from surface
n Convex constraint

ρρ(z)=0

ρρ(z)≠≠0

ρρ(z)=0

1Biharmonic expansion of strain field, Surface Science 294, 
324 (1993)



Why we don’t need all the data

n The constraints, e.g. support & atomistic, 
generate both amplitude & phase estimates.

n The amplitudes and phases of the 
unmeasured points must also be consistent 
with the constraints.

n Hence it is often (not always) possible to 
recover to a good approximation the 
“missing cone” values



Unmeasured Reflections
Recovery of Unmeasured Reflections
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Implimentation

n 300-1000 known moduli typically
n Two weighted parallel “atomistic” operators
n Over-relaxation & extrapolation
n Some “Statistical” constraints (set large U(k) first)
n L1 FOM (much better than L2)
n Genetic Algorithm global search – 1000 to 10000 initial 

phase sets (1-4 hrs on an HP workstation)
n About 20 3D FFT’s per starting point (10 iterations)
n Projection onto known atomic positions (as they become 

available)



Overall methodology

n Solve simplest problem with no prior 
information first

n Add additional constraints as analysis 
progresses
– Pruning of unrealistic solutions

– Acceptance of “correct” elements (e.g. atoms)

n Tends (hopefully) to a unique solution



Many subtle points

n Consider the FOM = | Ftrue – Fest|2

n Error Gaussian
– Fest = Ftrue + noise

n Ftrue large
– <Fest> ~ <Ftrue>

n Ftrue small
– <Fest> ~ noise

>> Ftrue

(similar to SIM weights) 0

0.5

1

1.5

2

0 0.5 1 1.5 2

True

Estimate



Role of “background” 
compensation

n Si (7x7) in p3m1 without 
compensation

n Si (7x7) in p3m1 with 
compensation

Experimental Data

Note: in p6mm 
compensation is not needed



NiO (111) 2x2 (p3m1)

Surface Science 470, 1-2, 1 (2000)

Experimental Data: Solution is quasi-unique in 3D (two 
branches in 2D)



InSb
c8x2

Experimental 
Data

Quasi-unique 
in 2D & 3D

Physical 
Review 
Letters 86, 
3586 (2001)



Conclusions

n We don’t need a formally exact recovery of 
the phases, only an approximate one

n We can generalize to include atomistic and 
other constraints

n Many 1D problems are quasi-unique
n Many 3D crystallographic problems are 

quasi-unique


